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Although it is now generally accepted that lithium dienolates undergo near 

exclusive alkylation at the a rather than the y carbon, 1 we will demonstrate in this 

letter that, at least, for some 8-alkoxy-a,@-unsaturated carbonyl compounds, subtle 

structural features can markedly effect the a-selectivity. Our interest in the 

alkylation of 8-alkoxy-a,B-unsaturated carbonyl compounds arose in connection with 

2,3 our studies directed at devising approaches to antitumor agents such as jatrophone, 

which possess the 3(2H)-furanone ring system. The results of this study are illus- 

trated in Table I. 

Initially we examined the alkylation of the kinetic enolate derived from 2,5- 

dimethyl-3(2H)-furanone(l)via treatment with LDA in THF at -76OC. As expected al- 

kylation occurred exclusively at the a'-position. 
4 
To our surprise however, alkyla- 

tion of dienolates derived from 3(2H)-furanones (i.e. 2 and 3) fully substituted in 

the a'-position afforded in excellent yield516 exclusive y-alkylation. To our -5-_--5W-- 

knowledge the only previous example of selective y-alkylation of a B-alkoxy-a,B-unsa- 

turated ketone is 2,6-dimethyl-y-pyrone (!).7'8 However, the aromatic nature of 5 

undoubtedly makes this doubly vinylogous ester a special case. From a synthetic 

point of view, significant here is the fact that alkylation of 3(2H)-furanones 

appears to be insensitive to the degree of substitution at the site of alkylation. 

Since the above results were in direct contrast with the exclusive a-alkyla- 

tion observed by deGroot and Hansen' for the closely related vinylogous ester 5, we 

repeated their work. As reported only a-alkylation occurred. 

4193 



4194 NQ. 44 

Tat& 1: Alkylation of 3(2H)-Funnonm and &Alkoxy-a,bmsatw8td 
Carbonyl Canlpoundr 

Entry Substrate R-X 

Alkylation distribution 
lP?rcentl Yield 

(percan t) prod”ct 
a 7 

1’0 

2” 

3” 

Lx / 0 Mel 1ooW) 0 73 10 

0 -’ looh’) 0 81 11 

0 

-ck I Mel 0 

0 7’ 0 

0 

G / Mel 0 

0 egr 0 

0 

n I I 
0 

-’ 0 

PhSeBr 0 

Mel 0 

100 85 12 

100 80 13 

100 93 14 

100 92 16 

100 83 16 

100 75 17 

loo 58 18 

Mel 100 0 61 19 

Mel 34 66 

EtOOC 

b / 
Mel loo ‘0 

Et0 

0 

f 
I0 /\/\/I 

% 

33 67 

0 

CO,Et 

OJI -’ 100 0 
Et 

74 29,21 

91 22 

95 23,24 

99 26 
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In an attempt to define further the apparent subtle structure features present 

in the dienolate which govern a vs y selectivity, we examined a series of rela- 

ted %-alkoxy-a,%-unsaturated carbonyl compounds. Ideal candidates for this purpose 

appeared to be %-alkoxy-a,%-unsaturated esters since a'- alkylation would no longer 

be a concern. Furthermore, Katzenellenbogen and Crumrine 15 recently demonstrated 

the propensity of a wide variety of copper dienolates, derived from simple a,$-unsa- 

turated esters to undergo selective y-alkylation. To this end unsaturated esters 

6-9 were prepared via know procedures, deprotonated in THF at -78OC with the LDA- VW_ 

HMPA complex prepared according to the method of Rathke 16 Schlessinger, 
17 

and the 

resultant lithium dienolate trapped either with methyl iodide or n-pentyl iodide. 

Under these conditions 6 and 0 afforded a mixture of a and y alkylated products, 

the y-products predominating 3:2 over that of the a. Esters 7 and 9 on the other 

hand afforded only u-alkylation. 

While no general rules can, as yet, be stated for the regioselectivity observed 

in the alkylation of %-alkoxy-a,%-unsaturated carbonyl compounds, we note that y-al- 

kylation was observed in all cases wherein the corresponding dienolate contains a 

double bond which is exocyclic to a ring as depicted below. No y-alkylation occur- 

red for substrates whose dienolate possessed an endocyclic or acyclic olefin. 

Clearly, extensive further 

the subtle nature of the a vs Y 

turated carbonyl compounds will 

in progress in our laboratory. 

structure-reactivity studies are required before 

selectivity in the alkylation of %-alkoxy-a,%-unsa- 

be fully appreciated. Such studies are currently 
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