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Although it is now generally accepted that lithium dienolates undergo near
exclusive alkylation at the a rather than the y carbon,1 we will demonstrate in this
letter that, at least, for some B-alkoxy-a,B-unsaturated carbonyl compounds, subtle
structural features can markedly effect the a-selectivity. Our interest in the
alkylation of B-alkoxy-o,B-unsaturated carbonyl compounds arose in connection with
our studies directed at devising approaches to antitumor agents such as jatrophone;?’3
which possess the 3(2H)-furanone ring system. The results of this study are illus-
trated in Table I.

Initially we examined the alkylation of the kinetic enolate derived from 2,5-
dimethyl-3(2H)-furanone (1) via treatment with LDA in THF at -76°C. As expected al-
kylation occurred exclusively at the ot'-position.4 To our surprise however, alkyla-
tion of dienolates derived from 3(2H)-furancnes (i.e. 2 and 3) fully substituted in

5,6

the o ~position afforded in excellent yield exclusive y-alkylation. To our

knowledge the only previous example of selective y-alkylation of a B-alkoxy-o,B-unsa-

turated ketone is 2,6-dimethyl-y-pyrone (é)-7’8

However, the aromatic nature of §
undoubtedly makes this doubly vinylogous ester a special case. From a synthetic
point of view, significant here is the fact that alkylation of 3(2H)-furanones
appears to be insensitive to the degree of substitution at the site of alkylation.
Since the above results were in direct contrast with the exclusive a-alkyla-
tion observed by deGroot and Hansen9 for the closely related vinylogous ester 5, we

repeated their work. As reported only a-alkylation occurred.
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Table 1: Alkylation of 3{2H)-Furanones and f-Alkoxy-a, f-unsaturated
Carbonyl Compounds

Alkylation distribution
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In an attempt to define further the apparent subtle structure features present
in the dienolate which govern o vs Yy selectivity, we examined a series of rela-
ted B-alkoxy-o,B-unsaturated carbonyl compounds. Ideal candidates for this purpose
appeared to be B-alkoxy-a,R-unsaturated esters since o“-alkylation would no longer
be a concern. Furthermore, Katzenellenbogen and Crumrine15 recently demonstrated
the propensity of a wide variety of copper dienolates, derived from simple a,B8-unsa-
turated esters to undergo selective y-alkylation. To this end unsaturated esters
6-9 were prepared via know procedures, deprotonated in THF at -78°C with the LDA-

16 Schlessinger,17 and the

HMPA complex prepared according to the method of Rathke
resultant lithium dienolate trapped either with methyl iodide or n-pentyl iodide.
Under these conditions 6 and 8 afforded a mixture of a and y alkylated products,
the y-products predominating 3:2 over that of the a. Esters Z and g on the other
hand afforded only a-alkylation.

While no general rules can, as yet, be stated for the regioselectivity observed
in the alkylation of B-alkoxy-a,B-unsaturated carbonyl compounds, we note that y-al-
kylation was observed in all cases wherein the corresponding dienolate contains a

double bond which is exocyclic to a ring as depicted below. No y-alkylation occur-

red for substrates whose dienolate possessed an endocyclic or acyclic olefin.

X OLi OLi
oLi Qui a0
—= o 721
R /k
o 0 o o 0

(R=Hor CH3)

Clearly, extensive further structure-reactivity studies are required before
the subtle nature of the a vs y selectivity in the alkylation of B-alkoxy-a,B-unsa-
turated carbonyl compounds will be fully appreciated. Such studies are currently
in progress in our laboratory.
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